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Bimodal approximation for anomalous diffusion in a potential
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Exact and approximate solutions of the fractional diffusion equation for an assembly of fixed-axis dipoles
are derived for anomalous noninertial rotational diffusion in a double-well potential. It is shown that knowl-
edge of three time constants characterizing thenormaldiffusion, viz., the integral relaxation time, the effective
relaxation time, and the inverse of the smallest eigenvalue of the Fokker-Planck operator, is sufficient to
accurately predict theanomalousrelaxation behavior for all time scales of interest.
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I. INTRODUCTION

The Brownian motion in a potential is of fundament
importance in problems involving relaxation and resona
phenomena in stochastic systems@1#. A rudimentary example
is the theory of dielectric relaxation of noninteracting po
molecules due to Debye@2#. That theory is based on th
Smoluchowski equation for the noninertial rotational diff
sion of the molecules. Moreover, because interactions
tween dipoles are ignored, the only potential arises from
spatially uniform weak external ac field. The Debye theo
cannot, however, explain the experimental data on dielec
relaxation of complex systems such as amorphous polym
glass forming liquids, etc. Here the relaxation behavior m
deviate considerably from the exponential~Debye! pattern
and is characterized by a broad distribution of relaxat
times@1#. The relaxation process in such disordered syste
is characterized by the temporal nonlocal behavior aris
from the energetic disorder which produces obstacles or t
which delay the motion of the particle and introduce mem
effects into the motion. The memory effects can be descri
by a fractional diffusion equation in the derivation of whic
is incorporated a waiting time probability density functio
@3,4#. That function governs the random time intervals b
tween single microscopic jumps~or reorientations in the cas
of rotational motion! of the particles. It follows that an im
portant task in dielectric relaxation of complex systems is
extend the Debye theory of relaxation of polar molecules
fractional dynamics, so that empirical decay functions, e
the stretched exponential of Williams and Watts@5#, may be
justified. Such a generalization of the Debye theory w
given in Ref.@6#.

As far as interacting dipoles in the fractional Brownia
dynamics are concerned the problem is much more diffi
than in normal diffusion. In normal diffusion, the particul
problem treated was the Brownian motion of dipoles in
periodic potential~see, e.g., Refs.@1,7–9#! representing the
1063-651X/2004/69~2!/021105~7!/$22.50 69 0211
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interactions. The relevance to the present problem is that
may simply model relaxation effects involving escape of
poles over a potential barrier again as Debye-like relaxat
however, the relaxation time depends exponentially on
barrier height through the Arrhenius law. The overbarrier
laxation due to normal diffusion has been extensively d
cussed by Fro¨hlich @10# using transition state theory@11,12#
and a rate equation approach originally suggested by De
@2#. Likewise anomalous diffusion in a potential may b
treated by using the fractional equivalent of the diffusi
equation@3,4#. This diffusion equation allows one to includ
explicitly in Fröhlich’s model as generalized to fraction
dynamics~i! the influence of the dissipative coupling to th
heat bath on the Arrhenius~overbarrier! process and~ii ! the
influence of the fast~high-frequency! intrawell relaxation
modes on the relaxation process.

The fractional translational diffusion in a potential is di
cussed in Refs.@3,4#. Just as with normal diffusion, the frac
tional diffusion equation can in general be solved by t
method of separation of the variables. The separation pro
dure yields an equation of Sturm-Liouville type. Howeve
no explicit solution for the fractional diffusion in a potentia
has ever been presented~the only exception is a solution fo
the harmonic potential given by Metzleret al. @13# in terms
of an eigenfunction expansion with Mittag-Leffler tempor
behavior!. Here, we shall present both exact and approxim
solutions for the anomalous rotational diffusion and diele
tric relaxation of an assembly of fixed axis dipoles rotating
a double-well potential representing the internal field due
neighboring molecules. This model has been treated in de
for normal diffusion in Refs.@1,7,9,14#. Here, we shall dem-
onstrate that the characteristic times of the normal diffus
process, namely, the inverse of the smallest nonvanish
eigenvalue, the integral and effective relaxation times,
tained in Refs.@1,7,9,14#, also allow us to evaluate the d
electric response of the system for anomalous diffusi
Moreover, these characteristic times yield a simple analyt
©2004 The American Physical Society05-1
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equation for the complex dielectric susceptibilityx~v! de-
scribing the anomalous relaxation of the system.

II. FRACTIONAL ROTATION DIFFUSION AND
DIELECTRIC RELAXATION IN A POTENTIAL

The fractional diffusion equation may be derived usi
the integral equation for a continuous time random w
~CTRW! @15#. The situation is thus unlike that in a conve
tional random walk which is characterized by a microsco
time scale which is small compared to the observation tim
The microscopic time in the context of the conventional ra
dom walk is the time the random walker takes to make
single microscopic jump. In the CTRW, on the other hand,
such microscopic time scale exists and the waiting time
randomly distributed so that the characteristic time scale
verges@3,4#. A common feature of all such systems is th
they exhibit anomalous relaxation behavior. Such behavio
in contrast to the normal diffusion and relaxation which tak
place in a regular space. Recently the CTRW has been
eralized to include the effect of time-dependent jump pr
abilities and a fractional diffusion equation in a single co
dinate has been derived when the average waiting t
diverges@3,4#. As far as rotational Brownian motion is con
cerned such an equation may be obtained from its tran
tional counterpart@Eq. ~101! of Ref. @4## by simply replacing
the positionx by the angular coordinatef. Thus, for frac-
tional rotational diffusion in an external potentialV(f,t),
one has

]W

]t
5t12s

0Dt
12sLFPW, ~1!

whereLFP is the Fokker-Planck operator for normal diffusio
defined by

LFPW5t21F ]

]f S W

kT

]V

]f D1
]2W

]f2 G ,
t5z/(kT) is the Debye relaxation time for rotation about
fixed axis,z is the friction coefficient, andkT is the thermal
energy. The operator0Dt

12s[ (]/]t)0Dt
2s in Eq. ~1! is

given in terms of the convolution~the Riemann-Liouville
fractional integral definition! @4#

0Dt
2sW~f,t !5

1

G~s!
E

0

t W~f,t8!dt8

~ t2t8!12s .

Here, just as with the translational diffusion equation trea
in Refs.@3,4#, we consider subdiffusion 0,s,1 phenomena
only (s51 corresponds to the normal diffusion!. Thus, the
fractional derivative is a type of memory function with
slowly decaying power law kernel in the time. IfV50, Eq.
~1! leads to anomalous~Cole-Cole-like! behavior of the com-
plex susceptibility@6#. Such behavior arises from rando
torques with an anomalous waiting time distribution, that
from a fractal time random walk witht as the intertrapping
time. The physical meaning of the parameters is the order of
the fractional derivative in the fractional differential equati
02110
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describing the continuum limit of a random walk with a ch
otic set of waiting times~often known as a fractal time ran
dom walk!. However, a more physical and useful definitio
of s is as the fractal dimension of the set of waiting tim
which is the scaling of the waiting time segments in t
random walk with magnification. Thus,s measures the sta
tistical self-similarity~or how the whole looks similar to its
parts @16#! of the waiting time segments. In order to co
struct such an entity in practice a whole discrete hierarchy
time scales such as will arise from energetic disorder
needed. For example, a fractal time Poisson process@16#
with a waiting time distribution assumes the typical form
a Lévy stable distribution in the limit of larget. This is
explicitly discussed in Ref.@16#, where a formula fors is
given and is also discussed in Ref.@17#. The fractal time
process is essentially generated by energetic disorder tre
as far as the ensuing temporal behavior is concerned by
sidering jumps over the wells of a chaotic potential barr
landscape. The microscopic picture presented in R
@16,17# appears to completely support the commonly us
experimental representation of the Cole-Cole behavior a
distribution of Debye-like relaxation mechanisms with a co
tinuous relaxation time distribution function.

The solutions of Eq.~1! are obtained from the Sturm
Liouville representation@4,13#

W~f,t !5 (
p50

`

Fp~f!Fp~ t !. ~2!

Here, the decay modesFp(t) obey the equation

d

dt
Fp~ t !52lp,s 0Dt

12sFp~ t !. ~3!

The eigenvalueslp,s may be expressed in terms of the e
genvalueslp of the Fokker-Planck operatorLFP for normal
diffusion @i.e., LFPFp(f)52lpFp(f)] so that

lp,s5lpt12s. ~4!

The solutions of Eq.~3! are the Mittag-Leffler functions
Es(z) @3,4#, viz.,

Fp~ t !5Es~2lp,sts!. ~5!

Equation~4! exemplifies how the eigenvalues of the norm
distribution process are altered, in this case reduced, by
nonlocal character of the anomalous diffusion process.
eigenvalues of the local process are related to their Brown
counterparts by the prefactort12s. This scaling effect is
significant in the context of escape of particles over poten
barriers. There, the smallest nonvanishing eigenvaluel1 of
the Fokker-Planck equation, written for the Brownian moti
in a potential, yields in the high barrier limit, the Krame
escape rate@11,12#. Since we consider the anomalous diff
sion analogue of the overdamped Brownian motion, the s
ing Eq. ~4! shows that the overdamped Kramers escape
for normal diffusionG;l1;e2DV/(kT) (DV is the barrier
height! is slowed by the factort12s so thatl1,s;t12sl1
5t12sG. Therefore, in the present context, the Kramers
5-2
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cape rate can be best understood as playing the role
decay parameter in the Mittag-Leffler functions governi
the highlynonexponentialrelaxation behavior of the system

In order to understand how the anomalous relaxation
havior influences the dielectric properties, we first recall t
according to linear response theory@18#, the longitudinal
complex dielectric susceptibilityx(v)5x8(v)2 ix9(v) is
defined as

x~v!

x8~0!
512 ivE

0

`

e2 ivtCs~ t !dt, ~6!

wherex8(0) is the static susceptibility,

Cs~ t !5
^cosf&~ t !2^cosf&0

^cosf&~0!2^cosf&0
5(

p
cpEs@2tlp~ t/t!s#

~7!

is the normalized relaxation functionC(t),

cp5

E
0

2p

~cosf2^cosf&0!Fp~f!df

(
p
E

0

2p

~cosf2^cosf&0!Fp~f!df

,

(pcp51, ^¯&(t) denotes the statistical averages over
assembly of rotators in the presence of a small probing
electric field, and̂¯&0 means the equilibrium statistical av
erages. Noting that the Laplace transform of the Mitta
Leffler function is

E
0

`

e2stEs@2lpt~ t/t!s#dt5
1

s1lp~ts!12s ,

we have from Eqs.~6! and ~7!

x~v!

x8~0!
5(

p

cp

11~ ivt!s/~tlp!
. ~8!

The susceptibility may be simply evaluated in the low (v
→0) and high (v→`) frequency limits. We obtain from Eq
~8!

x~v!

x8~0!
'12

t int

t
~ ivt!s1¯ ~9!

for v→0 and

x~v!

x8~0!
;

t

~ ivt!stef
1¯ , ~10!

for v→`, where the parameterst int andtef are defined as

t int5(
p

cp /lp and tef51Y (
p

cplp . ~11!

For normal diffusion, these parameters correspond to the
tegral relaxation timet int @the area under the correspondin
relaxation functionC1(t)5(pcpe2lpt] and the effective re-
02110
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laxation time tef @which gives precise information on th
initial decay of the relaxation functionC1(t)]. In general, it
is difficult to evaluatet int andtef from Eqs.~11! @just as it is
to evaluatex~v! from Eq. ~8!#, as a knowledge of all the
eigenvalueslk and their corresponding amplitudesck is re-
quired. However,t int and tef can be evaluated from thei
equivalent definitions

tef521/Ċ1~0! and t int5E
0

`

C1~ t !dt. ~12!

For one-dimensional rotational Brownian motion in a pote
tial, t int and tef defined by Eq.~12! may be expressed in
closed form, viz.@1#,

tef5t
11^cos 2f&022^cosf&0

2

12^cos 2f&0
~13!

and @1,14,19#

t int5
t

Z~^cos2 f&02^cosf&0
2!
E

0

2p

eV(f)/kTF E
0

f

~cosx

2^cosf&0!e2V(x)/kTdxG2

df, ~14!

where

Z5E
0

2p

e2V(f)/kTdf.

We note that the characteristic timest int andtef do not exist
in anomalous diffusion (sÞ1). This is obvious from the
properties of the Mittag-Leffler function, which has initiall
(t!t) stretched exponential~Kohlrausch! form @3,4#

Es@2~ t/t!s#;e2 (t/t)s/G(11s)

and long time inverse power law behavior

Es@2~ t/t!s#;
1

~ t/t!sG~12s!
,

and so describes nonexponential relaxation.

III. BIMODAL APPROXIMATION

As we shall see, two bands appear in the dielectric l
spectrum ofx9(v). The low-frequency band is due to th
slowest~overbarrier! relaxation mode; the characteristic fre
quencyvc and the half-width of this band are determined
l1 . Thus, the anomalous low-frequency behavior is dom
nated by the barrier crossing mode as in the normal di
sion. The high-frequency band is due to ‘‘intrawell’’ mode
corresponding to the eigenvalueslk (kÞ1). These near de
generate ‘‘intrawell’’ modes are indistinguishable in the fr
quency spectrum ofx9(v) appearing merely as a singl
high-frequency band. Thus, the spectrum of the longitudi
susceptibility x~v! may essentially be approximated by
sum of two Cole-Cole mechanisms, viz.,
5-3
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x~v!

x8~0!
5

D1

11~ iv/vc!
s 1

12D1

11~ iv/vW!s , ~15!

where the characteristic frequenciesvc andvW are given by

vc5t21~tl1!1/s, vW5t21~t/tW!1/s. ~16!

Here, we implicitly suppose that the contribution of the hig
frequency modes may be approximated by a single m
with characteristic frequencyvW . In the time domain, such a
bimodal approximation is equivalent to assuming that
relaxation functionCs(t) as determined by the exact Eq.~7!
~which in general comprises aninfinite numberof Mittag-
Leffler functions! may be approximated bytwo Mittag-
Leffler functions only, viz.,

Cs~ t !'D1Es@2~ t/t!stl1#1~12D1!Es@2~ t/t!st/tW#.

The parametersD1 andtW in Eqs.~15! and ~16! may be
determined from the condition that the approximate Eq.~15!
must obey the exact asymptotic Eqs.~9! and ~10! yielding

t int5D1 /l11tW~12D1!

and

tef
215D1l11tW

21~12D1!.

It follows thatD1 andtW may readily be evaluated from th
above equations yielding

D15
t int /tef21

l1t int2211/~l1tef!
, ~17!

tW5
l1t int21

l121/tef
. ~18!

Equation~15! involving the integral relaxation timet int , the
effective relaxation timetef , and the smallest nonvanishin
eigenvaluel1 correctly predictsx~v! both at low (v→0)
and high (v→`) frequencies. Moreover,x~v! may be de-
termined in the entire frequency range 0<v,` as we shall
presently see.

IV. DOUBLE-WELL POTENTIAL: APPROXIMATE AND
EXACT SOLUTIONS

As an example, we evaluate in the context of the tw
mode approximation the longitudinal susceptibilityx~v! of a
fixed axis rotator in a double-well potentialV(f)
5U sin2 f ~the normal noninertial diffusion in this mode
has been treated in detail in Refs.@1,7,9,14#!. This potential
determines two potential minima on the sites atf50 and
f5p as well as two energy barriers located atf5p/2 and
f53p/2. Here, we can use known equations fort int , tef ,
andl1 for the normal diffusion@1,9,14#; these equations ar
~in the notation of this paper!
02110
-
e

e

-

t int5
te2B

4B@ I 1~B!1I 0~B!#
E

0

p

e2B cos 2f erf2~A2B sinf!df,

tef5t
I 0~B!1I 1~B!

I 0~B!2I 1~B!
,

l1t5F p

12e22B (
p50

`
~21!p

2p11
I p11/2

2 ~B!G21

,

whereB5U/(2kT) is the barrier height parameter, erf(z) is
the error function, andI p(z) is the modified Bessel function
of the first kind. We recall that in the high barrier limit (B
@1), l1

21;t int;tpe2B/8B and tef;4Bt @1,7,9# yielding
simple asymptotic equations for the characteristic frequ
ciesvc andvW from Eqs.~16!, viz.,

vc;~8B/p!1/se22B/s/t ~19!

and

vW;~8B!1/s/t. ~20!

Thus,vc andvW depend not only on the barrier height~as in
normal diffusion! but also on the anomalous exponents
which substantially modifies the dielectric loss spectra. F
example, fort;10210 s, vc of the normal diffusion (s
51) will be reduced by a factor of the order 105 for s
51/2. The characteristic frequencyvc5t21(tl1)1/s is
shown in Fig. 1 as a function ofs andB.

In order to estimate the accuracy of the two-mode
proximation, we calculatex~v! by converting the solution of
the fractional diffusion Eq.~1! into the calculation of succes
sive convergents of a differential-recurrence relation just
normal diffusion@1,9#. We suppose that a uniform fieldE
~having been applied to the assembly of dipoles at a timt
52` so that equilibrium conditions prevail by the timet
50) is switched off att50. In addition, we suppose that th
field is weak~i.e., mE!kT which is the linear response con
dition @18#!. By expanding the distribution functionW(f,t)
in Fourier series

FIG. 1. Characteristic frequencyvc as a function ofs andB.
5-4
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W~f,t !5 (
p52`

`

eipfcp~ t !,

we have from Eq.~1! the differential-recurrence equation

ḟ p~ t !5t2s
0Dt

12s$Bp@ f p22~ t !2 f p12~ t !#2p2f p~ t !%,

~ t>0!, ~21!

where

f p~ t !5Re@cp~ t !#/~2p!5^cospf&~ t !.

Applying the integration theorem of Laplace transformati
generalized to fractional calculus@3,4#, we have from Eq.
~21!
l-

r

n
to

q.

te
th

ss

n
th

ea

02110
st f̃ p~s!2 f p~0!5~st!12s$Bp@ f̃ p22~s!2 f̃ p12~s!#

2p2 f̃ p~s!%, ~22!

where f̃ (s) denotes the Laplace transform off (t). Theexact
solution of the three-term recurrence Eq.~22! can be ob-
tained, just as normal diffusion, in continued fraction for
~see Refs.@1,9# for details!. On noting that the initial values
f p(0) may be expressed in terms ofI p(B) @9#, we have

f̃ 1~s!

f 1~0!
5

t~st!s21

~st!s112B1BpS3~s! F11 (
p51

`
~21!p

2p11

3
I p11~B!1I p~B!

I 1~B!1I 0~B! )
k51

p

S2k11~s!G ~23!

with successive convergents being calculated from the c
tinued fraction
Sp~s!5
Bp

~st!s1p21BpSp12~s!
5

Bp

~st!s1p21
B2p~p12!

~st!s1~p12!21
B2~p12!~p14!

~st!s1~p14!21¯

.

the
’’
able

ion
Thus, by setting s5 iv and by noting that C̃s( iv)
5 f̃ 1( iv)/ f 1(0), we maycalculate the complex susceptibi
ity x~v! from Eq.~6!, where the static susceptibilityx8(0) is
@9#

x8~0!5
m2N0

kT
^cos2 f&05

m2N0

kT

I 1~B!1I 0~B!

2I 0~B!

~m is the dipole moment andN0 is the number of dipoles pe
unit volume!. The ease of calculation ofx~v! from Eq. ~23!
represents the chief advantage of the continued fractio
comparison to the Sturm-Liouville method as applied
anomalous diffusion.

V. RESULTS AND DISCUSSION

Calculations of the normalized@m2N0 /(kT)51# suscep-
tibility x~v! from the exact continued fraction solution E
~23! and the approximate Eqs.~15! and ~16! are shown in
Figs. 2 and 3. Here, the low- and high-frequency asympto
Eqs. ~9! and ~10!, are also presented demonstrating that
bimodal approximation obeys the exact asymptotic Eqs.~9!
and ~10!. Two bands, which appear in the dielectric lo
spectrum ofx9(v) at 2B@1 ~in the high barrier limit!, reach
maximum at characteristic frequenciesvc andvW given by
Eqs. ~19! and ~20!, respectively. Apparently, the agreeme
between the exact continued fraction calculations and
approximate Eq.~15! is very good@the maximum relative
deviation between the corresponding curves, which app
at v;t21, does not exceed a few~3-5! percent#. Similar ~or
in

s,
e

t
e

rs

even better! agreement exists forall values ofB ands. Such
a good accuracy of the bimodal approximation is due to
fact that the infinite number of high-frequency ‘‘intrawell
modes~these near degenerate modes are indistinguish

FIG. 2. The real~a! and imaginary~b! parts of the complex
susceptibility evaluated from the exact continued fraction solut
@Eqs. ~23!: solid lines# for s50.5 and various values ofB and
compared with those calculated from the approximate Eq.~15!
~stars!. The low- ~dotted lines! and high-frequency~dashed lines!
asymptotes are calculated from Eqs.~9! and ~10!, respectively.
5-5
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appearing merely as a single Cole-Cole high-frequency b
in the dielectric loss spectrum! may be approximated effec
tively by a single mode. Thus, one may conclude that
~15! accurately describes the behavior ofx~v! for all fre-
quencies of interest and for all values of the barrier hei
(B) and anomalous exponent~s! parameters. We remark tha
bimodal approximation works extremely well both fo
anomalous (sÞ1) and normal (s51) cases~various appli-
cations for the normal diffusion in a potential are given
Refs.@1# and @19#!.

Thus, theanomalousrelaxation in a double-well potentia
is effectively determined by the bimodal approximation, E
~15!; the characteristic times of thenormaldiffusion process,
namely, the inverse of the smallest nonvanishing eigenva
the integral and effective relaxation times appearing as t
parameters. The bimodal approximation constitutes an
ample of the solution of the noninertial fractional diffusio
equation in a periodic potential and is to our knowledge
first example of such a solution. Moreover, the simp
asymptotic Eqs.~19! and ~20! allow one to easily evaluate

FIG. 3. The same as in Fig. 2 forB55 and various values ofs.
in

,

s.

ct.

02110
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the characteristic frequencies of the dielectric loss spect
in terms of the physical model parametersB and s. Thus,
Fröhlich’s model of relaxation over potential barrier bas
on the concept ofnormal diffusion may be generalized to
anomalousdiffusion in disordered energyscapes giving ri
to temporally nonlocal behavior@4#. Furthermore, one may
conjecture that the generalized Fro¨hlich model can explain
the anomalous relaxation of complex dipolar systems wh
the anomalous exponents differs from unity~corresponding
to the classical Debye theory of dielectric relaxation!, i.e.,
the relaxation process is characterized by a broad distribu
of relaxation times. The results obtained may be regarde
a generalization of the solution for the normal Brownian m
tion in a cosine periodic potential@1,9# to fractional dynam-
ics ~giving rise to anomalous diffusion!. Moreover, the exact
continued fraction solution clearly indicates how many exi
ing results of the classical theory of the Brownian motion
a potential@1,20# may be extended to fractional dynamics

It should be mentioned that if one is interested only
low-frequency (v<vc) part of the dielectric spectrum, on
may use a more simple single mode~Cole-Cole! equation for
the normalized complex susceptibility, namely,

x~v!

x8~0!
5

1

11~ iv/vc!
s . ~24!

The characteristic frequenciesvc is given by Eq.~16!. In
passing, we must remark that just as in the conventio
Debye relaxation (s51), the Cole-Cole-like Eq.~24! may
be derived from a number of very different models~see, e.g.,
Refs.@6,17,21,22#!. However, the advantage of using an a
proach based on a kinetic equation~such as the fractiona
Fokker-Plank equation! over all other approaches is that on
may explicitly include an external potential and exactly c
culate its effect on the relaxation process. Moreover, wit
simple extension to diffusion in phase space, one may
clude the inertial effects of the dipoles@23#.
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