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Bimodal approximation for anomalous diffusion in a potential
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Exact and approximate solutions of the fractional diffusion equation for an assembly of fixed-axis dipoles
are derived for anomalous noninertial rotational diffusion in a double-well potential. It is shown that knowl-
edge of three time constants characterizingrtbiemal diffusion, viz., the integral relaxation time, the effective
relaxation time, and the inverse of the smallest eigenvalue of the Fokker-Planck operator, is sufficient to
accurately predict thanomalousrelaxation behavior for all time scales of interest.
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[. INTRODUCTION interactions. The relevance to the present problem is that one
may simply model relaxation effects involving escape of di-
The Brownian motion in a potential is of fundamental poles over a potential barrier again as Debye-like relaxation,
importance in problems involving relaxation and resonancdéiowever, the relaxation time depends exponentially on the
phenomena in stochastic syste$ A rudimentary example  barrier height through the Arrhenius law. The overbarrier re-
is the theory of dielectric relaxation of noninteracting polarlaxation due to normal diffusion has been extensively dis-
molecules due to DebyE2]. That theory is based on the cussed by Fialich [10] using transition state theofyt1,12]
Smoluchowski equation for the noninertial rotational diffu- and a rate equation approach originally suggested by Debye
sion of the molecules. Moreover, because interactions bd2]. Likewise anomalous diffusion in a potential may be
tween dipoles are ignored, the only potential arises from théreated by using the fractional equivalent of the diffusion
spatially uniform weak external ac field. The Debye theoryequation3,4]. This diffusion equation allows one to include
cannot, however, explain the experimental data on dielectriexplicitly in Frohlich’'s model as generalized to fractional
relaxation of complex systems such as amorphous polymerglynamics(i) the influence of the dissipative coupling to the
glass forming liquids, etc. Here the relaxation behavior mayheat bath on the Arrheniusverbarriej process andii) the
deviate considerably from the exponentilebye pattern influence of the fasthigh-frequency intrawell relaxation
and is characterized by a broad distribution of relaxatiormodes on the relaxation process.
times[1]. The relaxation process in such disordered systems The fractional translational diffusion in a potential is dis-
is characterized by the temporal nonlocal behavior arisingussed in Refd.3,4]. Just as with normal diffusion, the frac-
from the energetic disorder which produces obstacles or trapgsonal diffusion equation can in general be solved by the
which delay the motion of the particle and introduce memorymethod of separation of the variables. The separation proce-
effects into the motion. The memory effects can be describedure yields an equation of Sturm-Liouville type. However,
by a fractional diffusion equation in the derivation of which no explicit solution for the fractional diffusion in a potential
is incorporated a waiting time probability density function has ever been presentétle only exception is a solution for
[3,4]. That function governs the random time intervals be-the harmonic potential given by Metzlet al.[13] in terms
tween single microscopic jumpger reorientations in the case of an eigenfunction expansion with Mittag-Leffler temporal
of rotational motion of the particles. It follows that an im- behavioy. Here, we shall present both exact and approximate
portant task in dielectric relaxation of complex systems is tosolutions for the anomalous rotational diffusion and dielec-
extend the Debye theory of relaxation of polar molecules tdric relaxation of an assembly of fixed axis dipoles rotating in
fractional dynamics, so that empirical decay functions, e.g.a double-well potential representing the internal field due to
the stretched exponential of Williams and Wd#&$, may be  neighboring molecules. This model has been treated in detail
justified. Such a generalization of the Debye theory wador normal diffusion in Refs[1,7,9,14. Here, we shall dem-
given in Ref.[6]. onstrate that the characteristic times of the normal diffusion
As far as interacting dipoles in the fractional Brownian process, namely, the inverse of the smallest nonvanishing
dynamics are concerned the problem is much more difficuleigenvalue, the integral and effective relaxation times, ob-
than in normal diffusion. In normal diffusion, the particular tained in Refs[1,7,9,14, also allow us to evaluate the di-
problem treated was the Brownian motion of dipoles in aelectric response of the system for anomalous diffusion.
periodic potentialsee, e.g., Refd.1,7—-9) representing the Moreover, these characteristic times yield a simple analytical
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equation for the complex dielectric susceptibiliffw) de-  describing the continuum limit of a random walk with a cha-

scribing the anomalous relaxation of the system. otic set of waiting timegoften known as a fractal time ran-
dom walk. However, a more physical and useful definition
II. FRACTIONAL ROTATION DIFFUSION AND of ¢ is as the fractal dimension of the set of waiting times
DIELECTRIC RELAXATION IN A POTENTIAL which is the scaling of the waiting time segments in the

random walk with magnification. Thus; measures the sta-

The fractional diffusion equation may be derived usingtistical self-similarity(or how the whole looks similar to its
the integral equation for a continuous time random walkparts[16]) of the waiting time segments. In order to con-
(CTRW) [15]. The situation is thus unlike that in a conven- struct such an entity in practice a whole discrete hierarchy of
tional random walk which is characterized by a microscopictime scales such as will arise from energetic disorder is
time scale which is small compared to the observation timeneeded. For example, a fractal time Poisson pro¢&6
The microscopic time in the context of the conventional ran-ith a waiting time distribution assumes the typical form of
dom walk is the time the random walker takes to make & Levy stable distribution in the limit of large. This is
single microscopic jump. In the CTRW, on the other hand, naexplicitly discussed in Ref{16], where a formula foro is
such microscopic time scale exists and the waiting time i%iven and is also discussed in R¢L7]. The fractal time
randomly distributed so that the characteristic time scale diprocess is essentia”y generated by energetic disorder treated
verges[3,4]. A common feature of all such systems is thatas far as the ensuing temporal behavior is concerned by con-
they exhibit anomalous relaxation behavior. Such behavior I§|der|ng jumps over the wells of a chaotic potentia| barrier
in contrast to the normal diffusion and relaxation which takeqandscape_ The microscopic picture presented in Refs.
place in a regular space. Recently the CTRW has been gent6,17 appears to completely support the commonly used
eralized to include the effect of time-dependent jump probexperimental representation of the Cole-Cole behavior as a
abilities and a fractional diffusion equation in a single coor-distribution of Debye-like relaxation mechanisms with a con-
dinate has been derived when the average Waiting timgnuous relaxation time distribution function.
diverges[3,4]. As far as rotational Brownian motion is con-  The solutions of Eq(1) are obtained from the Sturm-
cerned such an equation may be obtained from its transla-joyville representatiofi4,13]
tional counterparfEq. (101) of Ref.[4]] by simply replacing

the positionx by the angular coordinate. Thus, for frac- ”
tional rotational diffusion in an external potentisl(¢,t), W(e,t)= Z Du(P)F,(1). 2
p=0
one has
W Here, the decay modés,(t) obey the equation
=T 7D LeW, (D d N
GiFe(D=—Xp.0 DL Fy(t). 3
whereL gpis the Fokker-Planck operator for normal diffusion
defined by The eigenvalues , , may be expressed in terms of the ei-
5 genvalues\, of the Fokker-Planck operatdrgp for normal
| 9 [W V) W diffusion[i.e., Lgp® o(¢) = — N\, ® ()] so that
LFPW_ T — =+ ~—2 | p PP
IP\KT dp) 9 i
Npo=NpT 7. (4)

7={/(KT) is the Debye relaxation time for rotation about a ) _ .
fixed axis,{ is the friction coefficient, andtT is the thermal 1 he solutions of Eq(3) are the Mittag-Leffler functions
energy. The operatoE,Dtl"’E (alat)oD{ 7 in Eq. (1) is E,(2) [3.4] viz.,
given in terms of the convolutiorithe Riemann-Liouville _ _ o
fractional integral definition[4] Fo(l)=E(=Apot?). ©
Equation(4) exemplifies how the eigenvalues of the normal
1 tW(g,t")dt' distribution process are altered, in this case reduced, by the
(o) Jo (t—tHt o nonlocal character of the anomalous diffusion process. The
eigenvalues of the local process are related to their Brownian
Here, just as with the translational diffusion equation treatedtounterparts by the prefactartt~?. This scaling effect is
in Refs.[3,4], we consider subdiffusion®o<1 phenomena significant in the context of escape of particles over potential
only (c=1 corresponds to the normal diffusiohus, the barriers. There, the smallest nonvanishing eigenvalpef
fractional derivative is a type of memory function with a the Fokker-Planck equation, written for the Brownian motion
slowly decaying power law kernel in the time.\f=0, Eq.  in a potential, yields in the high barrier limit, the Kramers
(1) leads to anomalougole-Cole-like behavior of the com- escape ratgl1,12. Since we consider the anomalous diffu-
plex susceptibility[6]. Such behavior arises from random sion analogue of the overdamped Brownian motion, the scal-
torques with an anomalous waiting time distribution, that is,ing Eq. (4) shows that the overdamped Kramers escape rate
from a fractal time random walk with as the intertrapping for normal diffusionT' ~X\;~e V<D (AV is the barrier
time. The physical meaning of the parametés the order of  heigh is slowed by the factor! ™ so thath, ,~ O
the fractional derivative in the fractional differential equation = 71~ “T". Therefore, in the present context, the Kramers es-

D¢ W(,0)=
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cape rate can be best understood as playing the role of |axation time r.; [which gives precise information on the
decay parameter in the Mittag-Leffler functions governinginitial decay of the relaxation functioB,(t)]. In general, it
the highlynonexponentiatelaxation behavior of the system. s difficult to evaluater;,; and ro; from Egs.(11) [just as it is
In order to understand how the anomalous relaxation beto evaluatey(w) from Eq. (8)], as a knowledge of all the
havior influences the dielectric properties, we first recall thakjgenvalues\, and their corresponding amplitudeg is re-

according to linear response thedry8], the longitudinal
complex dielectric susceptibility(w)=x'(w)—ix"(w) is
defined as

* —iwt
wfo e lC (t)dt, (6)

wherey’(0) is the static susceptibility,

(cosg)(t) —(cosg)o
(cos¢)(0) —(cose)o

C, ()= =§ CpEql — A p(t/7)7]
7

is the normalized relaxation functidd(t),

2m
. (cos¢—(cose)o)Py(¢)d¢

c

p: 2 !
> j' (coSp—(COSP)) P ($)ddb
p Jo

2pcp=1, (---)(t) denotes the statistical averages over th

quired. However,7;,; and 7o can be evaluated from their
equivalent definitions

[

Tef:_l/Cl(O) and Tint:f Cl(t)dt (12)

0

For one-dimensional rotational Brownian motion in a poten-
tial, 7, and 7 defined by Eq.(12) may be expressed in
closed form, viz[1],

1+(cos 2p)o— 2(cosg)3

e 1 {cos 2o 49
and[1,14,19
L T 2T et ¢
Tine Z({cog ¢)o—(cose)?) jo © fo (cosx
2
—(cos¢)o)e VW KTdx| de, (14

ere

assembly of rotators in the presence of a small probing ac

electric field, and- - -)q means the equilibrium statistical av-
erages. Noting that the Laplace transform of the Mittag-

Leffler function is

* —st _ o - -
foe Eol —Np7(t/7)7]dt S+)\p(7's)17"’

we have from Eqgs(6) and(7)

X() . Cp
X' (0) 5 1+(iwn)(mhp)"

8

The susceptibility may be simply evaluated in the low (
—0) and high @w— =) frequency limits. We obtain from Eq.
8

X(w) Tint . -
m% —T(IwT) +--- (9)
for w—0 and
X(@) T 10

X0 Gonirg

for o—, where the parameters, and 7 are defined as

Tint= > Cp/\, and ref=1/ > cohp. (1))
p p

2
7= f e V(9)/kTy b.
0

We note that the characteristic timeg; and 7o do not exist
in anomalous diffusion ¢#1). This is obvious from the
properties of the Mittag-Leffler function, which has initially
(t< 1) stretched exponentidKohlrausch form [3,4]

Err[ _ (t/T)U'] ~e” t/In)%IT(1+0)

and long time inverse power law behavior

Bl =D 1~ G 1=0)’

and so describes nonexponential relaxation.

IIl. BIMODAL APPROXIMATION

As we shall see, two bands appear in the dielectric loss
spectrum ofy”(w). The low-frequency band is due to the
slowest(overbarriey relaxation mode; the characteristic fre-
quencyw. and the half-width of this band are determined by
N1. Thus, the anomalous low-frequency behavior is domi-
nated by the barrier crossing mode as in the normal diffu-
sion. The high-frequency band is due to “intrawell” modes
corresponding to the eigenvalueg (k#1). These near de-
generate “intrawell” modes are indistinguishable in the fre-
quency spectrum ofy”(w) appearing merely as a single

For normal diffusion these parameters correspond to the in-high-frequency band. Thus, the spectrum of the longitudinal
tegral relaxation timer;,; [the area under the corresponding susceptibility y(w) may essentially be approximated by a

relaxation functiorcl(t)=2pcpe‘>‘p‘] and the effective re-

sum of two Cole-Cole mechanisms, viz.,
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x(w) _ Ay n 1-4,
X' (0) 1+(io/oy)” 1+ (iolow)”’

(19

where the characteristic frequencies and w,, are given by

we=17 N, ww=1"Y(1 ). (16) bgpplrwd

-10
Here, we implicitly suppose that the contribution of the high-
frequency modes may be approximated by a single mode
with characteristic frequenay,y . In the time domain, such a
bimodal approximation is equivalent to assuming that the
relaxation functiorC(t) as determined by the exact @) /
(which in general comprises anfinite numberof Mittag- 5 02
Leffler functiong may be approximated bywo Mittag-

Leffler functions only, viz FIG. 1. Characteristic frequeneay, as a function ofr andB.
7e?B

Co()y=~AE [ — (/)N ]+(1—=ADE [ — (/777 mw]. o=
" AB[14(B)+14(B

fﬁe‘B c0s 2 orf2(\[2B sing)d ¢,
)1 Jo

The parameterd; and 7y, in Egs.(15) and(16) may be
determined from the condition that the approximate @&&) Io(B)+1,(B)

must obey the exact asymptotic E¢8) and (10) yielding T R
lo(B)—14(B)

Ti= A1 /N g+ 7y(1—Ay) . . .
™ (-1
1-e %8 Eo 2p+1

and N7= 15, 14B)

-1__ -1
Ter =A1hy+ 7y (1-4y). whereB=U/(2kT) is the barrier height parameter, ejf(s

) the error function, andl,(z) is the modified Bessel function
It follows thatA, and 7, may readily be evaluated from the of the first kind. We recall that in the high barrier limiB(

above equations yielding >1), Ay 1~ 7y~ 7me?®/8B and 7o~ 4Br [1,7,9 yielding
simple asymptotic equations for the characteristic frequen-
A= Tint! Ter— 1 17 ciesoc andwy from Egs.(16), viz.,
! N1Tine— 2+ (N q7ep)
we~ (8Bl m)Yoe 287/ 1 (29
NTing—1
TWENL— Urg’ 18 ang

Equation(15) involving the integral relaxation time,, the ww~(8B)"/ 7. (20)

effective relaxation timerg;, and the smallest nonvanishing

eigenvalue\ ; correctly predictsy(w) both at low @—0)  Thus,w. andw,, depend not only on the barrier heiglas in
and high w—) frequencies. Moreovel(w) may be de- normal diffusion but also on the anomalous exponent
termined in the entire frequency range@ <o as we shall which substantially modifies the dielectric loss spectra. For

presently see. example, forr~10"1%s, w. of the normal diffusion ¢

=1) will be reduced by a factor of the order*1for o

IV. DOUBLE-WELL POTENTIAL: APPROXIMATE AND =1/2. The characteristic frequencie=7"*(7A1)"" is
EXACT SOLUTIONS shown in Fig. 1 as a function af andB.

In order to estimate the accuracy of the two-mode ap-
As an example, we evaluate in the context of the two-proximation, we calculatg(w) by converting the solution of
mode approximation the longitudinal susceptibilifiw) of a  the fractional diffusion Eq(1) into the calculation of succes-
fixed axis rotator in a double-well potentiaV(¢) sive convergents of a differential-recurrence relation just as
=U sir’ ¢ (the normal noninertial diffusion in this model normal diffusion[1,9]. We suppose that a uniform field
has been treated in detail in Ref4,7,9,14). This potential  (having been applied to the assembly of dipoles at a time

determines two potential minima on the sites¢at0 and = —o0 so that equilibrium conditions prevail by the tinte
¢ = as well as two energy barriers locateddat w/2 and  =0) is switched off at=0. In addition, we suppose that the
¢=3m/2. Here, we can use known equations fQf, 7er, field is weak(i.e., uE<kKT which is the linear response con-
and\ ; for the normal diffusiori1,9,14; these equations are dition [18]). By expanding the distribution functiow( ¢,t)

(in the notation of this papgr in Fourier series
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©

W(p,H)= 2 €Plcy(t),
p oo

st p(8)— Fp(0)=(s7) > B[ Tp_2(S) —Tpsa(S)]
—pZ ()}, (22)

we have from Eq(1) the differential-recurrence equation  \wheref(s) denotes the Laplace transformfdt). Theexact
_ solution of the three-term recurrence EG2) can be ob-
f (=77 Dl_“{Bp[f _o(t) = foaa(t)]—p?f (1)}, tained, just as normal diffusion, in continued fraction form
P o P2 P2 P (see Refs[1,9] for detaily. On noting that the initial values
f,(0) may be expressed in termsig{B) [9], we have

(t=0), (21)
~f1(s)_ r(s7)? 1 - (1P
where fl(o)_(sT)”+1—B+Bp%(s){ +le 2p+1
fo(t)=Recy(t)]/(2m)=(cospe)(t). lpi1(B)+1,(B) 2
T BTIAE) 11 Sacea(s) (23

Applying the integration theorem of Laplace transformation
generalized to fractional calculy8,4], we have from Eq. with successive convergents being calculated from the con-

(21 tinued fraction
B Bp B Bp
S~ Gsnorpze BpS:a(s) (s7)7+ pi+ B°p(p+2)
2
(s7)7+(p+2)%+ B (p+2)(p+4)

(ST)7+(p+4)*+- -

Thus, by settings=iw and by noting thatC,(iw) even betteragreement exists fall values ofB ande. Such
—¥,(iw)/f,(0), we maycalculate the complex susceptibil- a good accuracy of the bimodal approximation is due to the

. : o ; fact that the infinite number of high-frequency “intrawell”
f Eq. h h I AT
I[tg] x(w) from Eq. (6), where the static susceptibility'(0) is modes (these near degenerate modes are indistinguishable

2N 2N, 1,(B)+1o(B 0]
X,(O):MkTo<Co§¢>0:MkTo 1(2|)0(Bo)( ) 101 (a)

T
(u is the dipole moment anl, is the number of dipoles per N0 0=05

unit volume. The ease of calculation gf{w) from Eqg. (23) 11-B=0.01

represents the chief advantage of the continued fraction in 15*}2-B=25

comparison to the Sturm-Liouville method as applied to 3-B=50

anomalous diffusion. e e e g e T
107 10" 10° 10° 10" 10°

V. RESULTS AND DISCUSSION

Calculations of the normalizefgu®Ny/(kT)=1] suscep- .
tibility x(w) from the exact continued fraction solution Eq. 8 3
(23) and the approximate Eqél5) and (16) are shown in 10 E
Figs. 2 and 3. Here, the low- and high-frequency asymptotes 1
Egs.(9) and (10), are also presented demonstrating that the 4]

1

) o . 1074
bimodal approximation obeys the exact asymptotic Egk. ;
and (10). Two bands, which appear in the dielectric loss !1;.. T T g e e
spectrum ofy” (w) at 2B>1 (in the high barrier limit, reach 107 10° 107 pr 10 10 10

maximum at characteristic_ frequencies and wyy, given by FIG. 2. The real(@ and imaginary(b) parts of the complex
Egs. (19) and (20), respectively. Apparently, the agreement gysceptibility evaluated from the exact continued fraction solution
between the exact continued fraction calculations and thgegs. (23): solid line§ for ¢=0.5 and various values d8 and
approximate Eq(15) is very good[the maximum relative compared with those calculated from the approximate @)
deviation between the corresponding curves, which appeaistars. The low- (dotted line$ and high-frequencydashed lines
atw~ 71, does not exceed a fe(8-5) percent. Similar(or  asymptotes are calculated from E¢®). and (10), respectively.
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the characteristic frequencies of the dielectric loss spectrum
in terms of the physical model paramet&sand o. Thus,
Frohlich's model of relaxation over potential barrier based
on the concept ohormal diffusion may be generalized to
anomalousdiffusion in disordered energyscapes giving rise
to temporally nonlocal behavid#]. Furthermore, one may
conjecture that the generalized Rlich model can explain
the anomalous relaxation of complex dipolar systems where
the anomalous exponeatdiffers from unity (corresponding
to the classical Debye theory of dielectric relaxajiore.,
the relaxation process is characterized by a broad distribution
of relaxation times. The results obtained may be regarded as
a generalization of the solution for the normal Brownian mo-
tion in a cosine periodic potentigl,9] to fractional dynam-
ics (giving rise to anomalous diffusignMoreover, the exact
continued fraction solution clearly indicates how many exist-
ing results of the classical theory of the Brownian motion in
A V. S a potential[1,20] may be extended to fractional dynamics.
02 10 107 10° 10* 10° It should be mentioned that if one is interested only in
wT low-frequency w<w,) part of the dielectric spectrum, one
may use a more simple single mo@eole-Cole equation for
the normalized complex susceptibility, namely,

appearing merely as a single Cole-Cole high-frequency band

in the dielectric loss spectrunmay be approximated effec- x(@) _ 1

tively by a single mode. Thus, one may conclude that Eq. x'(0) 1+(iw/wy)?"

(15) accurately describes the behavior yfw) for all fre-

guencies of interest and for all values of the barrier heighThe characteristic frequencies; is given by Eq.(16). In

(B) and anomalous exponefat) parameters. We remark that passing, we must remark that just as in the conventional

bimodal approximation works extremely well both for Debye relaxation §=1), the Cole-Cole-like Eq(24) may

anomalous ¢+ 1) and normal §=1) casegvarious appli- be derived from a number of very different mod&ee, e.g.,

cations for the normal diffusion in a potential are given in Refs.[6,17,21,22). However, the advantage of using an ap-

Refs.[1] and[19]). proach based on a kinetic equatisuch as the fractional
Thus, theanomalougelaxation in a double-well potential Fokker-Plank equatigrover all other approaches is that one

is effectively determined by the bimodal approximation, Eq.may explicitly include an external potential and exactly cal-

(15); the characteristic times of thirmaldiffusion process, culate its effect on the relaxation process. Moreover, with a

namely, the inverse of the smallest nonvanishing eigenvalueimple extension to diffusion in phase space, one may in-

the integral and effective relaxation times appearing as timelude the inertial effects of the dipol¢23].

parameters. The bimodal approximation constitutes an ex-

ample of the solution of the noninertial fractional diffusion ACKNOWLEDGMENTS

equation in a periodic potential and is to our knowledge the

first example of such a solution. Moreover, the simple The support of this work by EOARDContract No.

asymptotic Eqs(19) and (20) allow one to easily evaluate FA8655-03-01-302)is gratefully acknowledged.

FIG. 3. The same as in Fig. 2 f&=5 and various values af.
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